Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering

نویسندگان

  • D. L. Nika
  • E. P. Pokatilov
  • A. A. Balandin
چکیده

One dimensional quantum-dot superlattices (1D-QDSLs) consisting of acoustically mismatched materials are demonstrated theoretically to possess sub-1 W m−1 K−1 thermal conductivity in the 50–400 K range of temperatures. We consider coherent Si/Ge 1D-QDSLs, as well as model Si/plastic, Si/SiO2 and Si/SiC 1D-QDSLs. The phonon energy spectra and group velocities are obtained in the framework of the face-centered cubic cell model of lattice dynamics. On this basis, lattice thermal conductivity is calculated. A strong reduction of lattice thermal conductivity in 1D-QDSL structures in comparison with homogeneous rectangular Si nanowires is explained by the exclusion of phonon modes folded in superlattice segments from the heat flow and by the decelerating action of Ge, SiO2, or plastic materials. Thus, the 1D-QDSL structures act as effective phonon filters, eliminating a significant number of phonon modes from thermal transport. The obtained results imply a perspective of quantum-dot superlattices as thermoelectric materials and thermal insulators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic Phonon Spectrum Modification in Nanostructures and Its Effect on Lattice Thermal Conductivity

The feature size of conventional electronic devices has already fallen below the acoustic phonon mean free path (MFP) in silicon, which is estimated to be 50 nm – 300 nm at room temperature. The lateral dimensions of nanowires and the size of quantum dots in quantum dot superlattices (QDS) fabricated by different self-assembly techniques are approaching the wavelength of a dominant phonon mode,...

متن کامل

The effect of the long-range order in a quantum dot array on the in-plane lattice thermal conductivity

Semiconductor quantum dot superlattices consisting of arrays of quantum dots have shown great promise for a variety of device applications, including thermoelectric power generation and cooling. In this paper we theoretically investigate the effect of long-range order in a quantum dot array on its in-plane lattice thermal conductivity. It is demonstrated that the long-range order in a quantum d...

متن کامل

Cross-plane thermal conductivity of self-assembled Ge quantum dot superlattices

The self-assembled quantum dot structure is an interesting topic for physical investigation of zero-dimensional system. Due to the low-dimensional confinement effect, the Ge-on-Si quantum dot structure is expected to demonstrate novel optoelectronic properties that can be applied to develop Sibased technology competitive with traditional optoelectronic materials such as III-V compounds. In addi...

متن کامل

In-plane lattice thermal conductivity of a quantum-dot superlattice

We have theoretically investigated the in-plane lattice thermal conductivity of a quantum-dot superlattice. The calculations were carried out for a structure that consists of multiple layers of Si with randomly distributed Ge quantum dots separated by wetting layers and spacers. Our model takes into account scattering of acoustic phonons on spherical quantum dots, and corresponding modification...

متن کامل

بهبود بازده تبدیل انرژی حالت جامد با استفاده از نانوساختارهای ترموالکتریک

Solid-state energy conversion technologies such as thermoelectric refrigeration and power generation require materials with low thermal conductivity yet high electrical conductivity and Seebeck coefficiency. Although semiconductors are the best thermoelectric materials, they rarely have the such features. Nanostructures such as superlattices, quantum wires, and quantum dots provide novel method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011